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Self-induced transparency solitary waves in a doped nonlinear photonic band gap material

Neşet Aközbek* and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 11 February 1998!

We derive the properties of self-induced transparency~SIT! solitary waves in a one-dimensional periodic
structure doped uniformly with resonance two-level atoms. In our model, the electromagnetic field is treated
classically and the dopant atoms are described quantum mechanically. The resulting solitary waves take the
form of ultrashort~picosecond! laser pulses which propagate near the band edge of the nonlinear photonic band
gap ~PBG! material doped with rare-earth atoms such as erbium. Solitary wave formation involves the com-
bined effects of group velocity dispersion~GVD!, nonresonant Kerr nonlinearity, and resonant interaction with
dopant atoms. We derive the general Maxwell-Bloch equations for a nonlinear PBG system and then demon-
strate the existence of elementary solitary wave solutions for frequencies far outside the gap where GVD
effects are negligible and for frequencies near the photonic band edge where GVD effects are crucial. We find
two distinct new types of propagating SIT solitary wave pulses. Far from Bragg resonance, we recapture the
usual McCall-Hahn soliton with hyperbolic secant profile when the nonlinear Kerr coefficientx (3)50. How-
ever, when the host nonresonant Kerr coefficient is nonzero, we obtain the first new type of soliton. In this
case, the optical soliton envelope function deviates from the hyperbolic secant profile and pulse propagation
requires nontrivial phase modulation~chirping!. We derive the dependence of the solitary wave structure on the
Kerr coefficientx (3), the resonance impurity atom density, and the detuning of the average laser frequency
from the atomic transition. When the laser frequency and the atomic transition frequencies are near the
photonic band edge we obtain the second type of soliton. To illustrate the second type of soliton we consider
two special cases. In the first case, GVD facilitates the propagation of an unchirped SIT-gap soliton moving at
a velocity fixed by the material’s parameters. The soliton structure changes dramatically as the laser frequency
is tuned through the atomic resonance. In the second illustrative case we set the Kerr coefficientx (3)50. In this
case, the solution is a chirped pulse which arises from the balance between GVD and the resonance interaction
with the dopant atoms. Finally, we show that under certain circumstances, these solitary wave solutions may
persist even in the presence of~subpicosecond! dipolar dephasing of the dopant atoms and absorption losses of
the host PBG material, provided that the system is incoherently pumped. These results may be relevant to the
application of PBG materials as optical devices in fiber-optic networks.@S1063-651X~98!08409-8#

PACS number~s!: 42.70.Qs, 42.65.Tg, 42.50.Md
t-
a
is

up
nt

t

xis

al
G
. I
a

ci
es

und

er
ion
pti-
an
lve
at-
he
d

-

ate
nu-
is
imu-
er
ort
hort
ter-

ef-
s

tion

d

RD
r

I. INTRODUCTION

Optical fiber solitons@1# have received considerable a
tention for more than a decade in the context of optical d
transmission over long distances. The physical mechan
for the formation of a fiber soliton is the balance of gro
velocity dispersion~GVD! due to the frequency-depende
refractive index of the fiber and self-phase modulation due
the nonlinear Kerr effect@2#. More recently, it has been
shown that optical gap solitons of a similar nature may e
in a nonlinear Bragg grating@3–7# and a nonlinear photonic
band gap~PBG! material@8# in which GVD is provided by
the periodic dielectric modulation of the underlying materi
This is of particular importance for the application of PB
materials as optical interconnects in fiber-optic networks
a PBG material, a frequency gap is opened in which there
no linear propagating electromagnetic modes for frequen
within the gap. Near a photonic band edge GVD is manif
even in the absence of a frequency-dependent refractive

*Present address: Weapons Sciences Directorate, AMSAM-
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dex and can be many orders of magnitude larger than fo
in conventional silica fibers.

Amplification and reshaping of an optical signal in a fib
is facilitated by passing the pulse through an active reg
doped with resonant atoms such as erbium. Unlike the o
cal solitons of a nonresonant Kerr medium, solitons in
active medium containing resonant two-level atoms invo
the coherent absorption and reemission of light from the
oms in which the quantum mechanical Bloch vector of t
atoms undergoes a 2p rotation. These solutions are referre
to as self-induced transparency~SIT! solitons and were de
scribed by McCall and Hahn in 1967@9#. They showed that
under certain conditions a soliton pulse can propag
through a gas of resonant atoms, without distortion or atte
ation. In the SIT soliton the role of material dispersion
replaced by the coherent absorption and subsequent st
lated emission of light into the direction of the incident las
pulse. The formation of the SIT soliton requires ultrash
high intensity pulses, which propagate on time scales s
compared to the damping times of the Bloch vector de
mined by spontaneous emission and dipolar dephasing
fects. Since their discovery, SIT solitons for two-level atom
in ordinary vacuum have received considerable atten
@10–12#.

Recently Nakazawaet al. @13# have observed self-induce

-
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transparency solitons in an erbium doped silica fiber wa
guide. In their experiment, the fiber was cooled to a tempe
ture of 4.2 K at which the dipole-dephasing time is of t
order of nanoseconds. The SIT fiber solitons consisted
500 picosecond laser pulses which are short enough to b
the coherent photon-atom interaction regime. Fibers do
with rare-earth atoms such as erbium, ytterbium, neo
mium, and thulium have been studied for the purpose
pulse amplification. In particular, the erbium atom has
resonant transition near 1.55mm, the wavelength of choice
for optical telecommunications. It has been theoretica
demonstrated that solitons may exist in an erbium do
fiber through the combined effects of the GVD, Kerr effec
of the host medium, and the resonant interaction with ato
@14#. These solitons satisfy both the nonlinear Schro¨dinger
equation~NLSE! as well as the atomic Bloch equations. A
cordingly they are called SIT-NLS solitons. However, t
existence of the SIT-NLS soliton requires a strict relati
among the material parameters@14# which is difficult to sat-
isfy in general. For example, given the Kerr coefficient
silica and dipole moment for the relevant erbium transitio
the required GVD is many orders of magnitude larger th
possible in most silica fibers.

In this paper we consider a one-dimensional nonlin
photonic band gap material~Bragg grating! doped uniformly
with resonant two-level atoms. Systems of this nature
easily fabricated. It also provides a valuable paradigm fo
doped, three-dimensional nonlinear PBG material exhibit
a complete three-dimensional gap. Previously, some spe
ized models of a doped Bragg grating have been consid
which yield exact analytical solutions. Mantsyzov a
Kuzmin @15# have studied pulse propagation in adiscrete
one-dimensional medium made of two-level atoms. T
model was extended by Kozhekin and Kurizki@16# to a con-
tinuous medium in which thin layers of resonant atoms
placed at regular intervals inside the periodic dielectric m
dium. However, from a practical point of view, these sy
tems are difficult to realize. In our uniformly doped PB
model we use the slowly varying envelope approximat
~SVEA! to derive the Maxwell-Bloch equations for the fo
ward and Bragg scattered electric field amplitudes. When
laser frequency is tuned close to the photonic band edge
show that pulse propagation is described by an effective n
linear Schro¨dinger equation coupled to the atomic Bloc
equations. The combined effects of GVD and nonreson
Kerr effect of the host PBG material lead to a solitary wa
which is simultaneously a gap soliton and a SIT solito
which we refer to as a SIT-gap soliton. Although the und
lying equations for the band-edge approximation are sim
to those of the doped fiber, the physical meaning of th
equations is very different. In the SIT-gap soliton, the tim
variable in the fiber soliton equation is replaced by a spa
coordinate. This is due to the fact that the GVD in fibers
provided by the frequency-dependent dielectric const
whereas in a PBG the GVD arises from the periodic spa
variation of the dielectric constant. In contrast to the fib
SIT soliton, the SIT-gap soliton may be simpler to reali
experimentally since it does not require a strict condit
among the material parameters.

Using the model described above, we derive the existe
of two distinct types of optical solitons. The first new type
-
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soliton occurs when the laser frequency and the atomic t
sition frequency are near a photonic band edge. We illust
this first type of soliton by focusing on two special case
both of which lead to simple analytic results. The first spec
case is an unchirped soliton which travels at a velocity p
scribed by the material parameters. This involves the
effect of GVD, nonresonant Kerr effect, and the reson
interaction with impurity atoms. This in turn leads to a ne
class of solitons moving with general velocities. Howev
this family of solitons involves self-phase modulation~chirp-
ing! as the velocity deviates from the prescribed veloci
The second illustrative case is that of a chirped soliton a
ing from band-edge GVD and resonant interaction with i
purity atoms, but vanishing Kerr nonlinearity of the bac
ground dielectric material.

A second type of optical soliton arises when the laser fi
frequency is far outside the PBG. Here, we derive the S
Kerr soliton of a uniform medium. Such a solution has be
considered by Matulic and Eberly@17# in the limit of a small
Kerr coefficient. Here we obtain an exact solution, whi
cannot be extrapolated from the result of Matulic and Ebe
The exact solution exhibits self-phase modulation and is
a simple hyperbolic secant type envelope function. The s
ton amplitude and pulse width depend on the Kerr coeffici
and the dopant density. It reduces to the McCall-Hahn S
soliton when the Kerr coefficient is set to zero.

These classical solitary wave solutions involve high inte
sity laser fields and are distinct from the quantum gap s
tons @18# which arise from a quantum mechanical treatme
of the electromagnetic field. The latter are highly nonclas
cal states of light and may involve only a small number
photons. The SIT solitary waves in the present paper invo
a large number of photons in a classical~coherent! state.

II. MAXWELL-BLOCH EQUATIONS FOR A
PERIODIC DIELECTRIC MEDIUM

We consider a one-dimensional periodic medium dop
with two-level atoms. For intense optical pulses contain
many photons, a semiclassical treatment of the radiation fi
is adequate. The coupled atom-field system is then descr
by the Maxwell-Bloch equations@19#. We consider a hos
medium in which the dielectric constant takes the form

e~x!5 ẽ1De cos~2k0x!. ~2.1!

Here ẽ is the average dielectric constant of the medium,De

is the strength of the periodic dielectric variation (De! ẽ),
and k05p/a0 for lattice constanta0 . In the case that the
electric field is always perpendicular to the direction
which it varies, Maxwell’s equations lead to the followin
scalar wave equation:

]2E~x,t !

]x2 2
e~x!

c2

]2E~x,t !

]t2 2
4p

c2

]2Pnl
host~x,t !

]t2

2
4p

c2

]2Pnl
atoms~x,t !

]t2 50. ~2.2!

HerePnl
atomsis the nonlinear polarization due to the two-lev

atoms andPnl
host is the nonresonant nonlinear contribution
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the host medium which is assumed to be of the form o
simple Kerr response:Pnl

host5x (3)uEu2E where x (3) is the
Kerr constant. Here we assume that all scattering of the
trashort laser pulse by the atoms is in the forward directi
Since the periodic dielectric function can scatter light ba
and forth, the total electric field inside the periodic mediu
can be written in terms of forward and Bragg reflected fi
components:

E~x,t !5E1~x,t !e2 iv0t1 ik0x1E2~x,t !e2 iv0t2 ik0x1c.c.,
~2.3!

wherev0 is the average frequency of the laser pulse. Lik
wise the polarization due to the two-level atoms is given

Pnl
atoms~x,t !5P1~x,t !e2 iv0t1 ik0x1P2~x,t !e2 iv0t2 ik0x1c.c.

~2.4!

In Eqs. ~2.3! and ~2.4!, E1 , E2 , P1 , and P2 are slowly
varying envelope functions. In the slowly varying envelo
approximation@19# it is assumed thatu]E1,2/]tu!v0uE1,2u,
u]E1,2/]xu!k0uE1,2u and that higher derivative terms wit
respect tox and t may be neglected. The dopant atoms a
distributed uniformly but randomly in space with avera
densityNd . In this case, the atomic polarization of the atom
is represented as a continuous function ofx. In particular,
P1,25Nd^p1,2&, wherep1,2 are single-atom polarization op
erators which will be defined in terms of the atomic dens
matrix. Inserting Eqs.~2.3! and~2.4! into Eq. ~2.2! with Eq.
~2.1! we obtain

i
]E1

]t
1 i

]E1

]x
1bE21nL~ uE1u212uE2u2!E11h^p1&50,

~2.5!

i
]E2

]t
2 i

]E2

]x
1bE11nL~ uE2u212uE1u2!E21h^p2&50.

~2.6!

Here,x and t are dimensionless variables measured in u
of k0

21 andv0
21, respectively. The other parameters are

fined as v05cp/Aẽa0 , b5De/4ẽ, nL56px (3)/ ẽ, h
52pNd / ẽ and^ & denotes averaging due to inhomogeneo
broadening of the resonant atomic transition frequencyvba :

^p1,2~x,t,Dv!&5E
2`

`

p1,2~x,t,Dv!g~Dv2Dv8!d~Dv!.

~2.7!

Here, g(Dv82Dv) is the probability distribution ofinho-
mogeneouslybroadened energy levels of the resonant ato
Dv5v2vba is the detuning of the atomic transition fre
quencyvba from the incoming radiation frequencyv, and
Dv8 is the detuning of the laser field frequency from the li
center frequencyvba . For purelyhomogeneousbroadening
g(Dv82Dv) becomes simply ad function and ^p1,2&
5p1,2.

We now consider the underlying atomic Bloch equatio
for a periodic dielectric structure uniformly doped with res
nant atoms. This involves a generalization of the derivat
in ordinary vacuum found in most standard nonlinear op
a
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textbooks@19#. The Heisenberg equation of motion for th
232 atomic density operatorr is given by

i\
]r

]t
5@H,r#1$H,G%. ~2.8!

Here the HamiltonianH5H01V(t) whereH0 denotes the
atomic Hamiltonian,V(t) denotes the interaction of the ato
with the electromagnetic field, andG describes the damping
processes due to radiative and nonradiative spontan
emission, and other dephasing effects. We denote the lo
atomic level bya and the upper level byb. In the electric-
dipole approximation,V(t)52mE(t) wherem is the dipole
moment andE(t) is the applied electric field. From Eq.~2.8!
the time evolution of the density matrix elements can
written as@19#

d

dt
rba52S ivba1

1

T2
D rba1

i

\
Vbarpop ~2.9!

and

d

dt
rpop52

rpop2rpop
0

T1
2

2i

\
~Vbarab2rbaVab!.

~2.10!

Here rpop[rbb2raa describes the population difference
the atoms, which has an equilibrium valuerpop

0 andrba is the
atomic polarization. The effects of the matrixG have been
included phenomenologically through the relaxation tim
T1 andT2 which describe the lifetime of the upper level an
the dephasing time of the dipole moment, respectively. Fo
monochromatic applied field

Vba52mba~Ee2 ivt1E* eivt!, ~2.11!

a solution can be obtained in the formrba5sbae
2 ivt. In the

rotating wave approximation, we neglect terms oscillating
e6 i2vt. In this case Eq.~2.10! becomes

d

dt
rpop52

rpop2rpop
0

T1
2

2i

\
~mbaEsab2mabE* sba!.

~2.12!

Defining Dv5v2vba , s[sba , w5rbb2raa , m[mba ,
andp5ms the optical Bloch equations become@19#

d

dt
p5S iDv2

1

T2
D p2

i

\
m2Ew, ~2.13!

d

dt
w52

w2weq

T1
1

2i

\
~Ep* 2E* p!. ~2.14!

In an extended Bragg scattering medium Eqs.~2.13! and
~2.14! must be further simplified by separating the slow a
fast varying spatial components ofp, E, andw. A general
Fourier expansion will lead to an infinite number of coupl
equations. In the spirit of the SVEA we obtain a closed se
equations by keeping only the leading terms, namely,

p5p1eik0x1p2e2 ik0x ~2.15!

and
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w5w01w1ei2k0x1w1* e2 i2k0x. ~2.16!

Inserting these expansions into the Bloch equations~2.13!
and ~2.14! we obtain the following coupled equations:

]p1

]t
5S iDv2

1

T2
D p12 i

m2

\
~E1w01E2w1!, ~2.17!

]p2

]t
5S iDv2

1

T2
D p22 i

m2

\
~E2w01E1w1* !, ~2.18!

]w0

]t
52

~w02weq!

T1
1

2i

\
~E1p1* 1E2p2* 2E1* p12E2* p2!,

~2.19!

]w1

]t
52

w1

T1
1

2i

\
~E1p2* 2E2* p1!, ~2.20!

whereDv512vba is the detuning of the atomic transitio
frequency from the midgap frequency. Hereafter, all the f
quencies are measured in units ofv0 . The timesT1 andT2

are measured in units ofv0
21. Equations~2.5! and~2.6! and

Eqs. ~2.17!–~2.20! can be written in a compact form by in
troducing the 232 Pauli matrices (sx , sy , sy! and defining
the two-component ‘‘spinor’’ fieldsC†5(E1* ,E2* ), p†

5(p1* ,p2* ), andW†5(w1* ,w1):

i
]C

]t
1 isz

]C

]x
1bsxC1nL@3~C†C!2~C†szC!sz#C

1h^p&50, ~2.21!

]p

]t
5S iDv2

1

T2
D p2 i

m2

\
w0C2 i

m2

2\
@~W†C!w1

2~W†szC!w2#, ~2.22!

]w0

]t
52

~w02weq!

T1
1

2i

\
~p†C2C†p!, ~2.23!

]W

]t
52

W

T1
1

i

\
$@~p†sxC!2~C†sxp!#w12@~p†isyC!

2~C†isyp!#w2%. ~2.24!

Here, w1
†5(1,1) andw2

†5(1,21). Equations~2.21!–~2.24!
describe the Maxwell-Bloch equations for a uniformly dop
periodic dielectric medium in the SVEA.

For reference purposes, we first consider the case
harmonic medium in whichnL5h50. In this case, plane
wave solutions of the formC5Fe2 iVt1 iqx satisfy the dis-
persion relation

V2~q!5q21b2. ~2.25!

This gives two frequency branchesV6(q)56Aq21b2 ~see
Fig. 1!. The band edges occur whenq50 at frequencies
V656b. For frequencies2b,V,b, q is purely imagi-
nary and the field is exponentially attenuated within the m
dium. As a consequence, incident radiation of low intens
is completely reflected back. Outside the band gap,q is real,
-

a

-
y

facilitating linear wave propagation within the medium. Th
eigenvectors of the upper and lower dispersion branches
given by

F65
1

A2V1~q!
S AV1~q!6q

7AV1~q!7qD . ~2.26!

Near the band edges (q50) we haveF15(1,21)/& and
F25(1,1)/& describing standing wave solutions, where
when q→` then F15(1,0) and F25(0,1), describing
plane waves propagating to the right and left. It should
noted that here we have neglected the linear contributio
the dispersion relation arising from the two-level atoms. T
is justified by the fact that we will treat the resonant atom
response exactly using the Bloch equations for a given d
sity of dopant atoms. This treatment, however, considers
density of atoms,Nd , to be uniform. For a Poissonian dis
tribution of atoms, there are fluctuations in the atomic de
sity DNd.ANd. This in turn leads to random fluctuations
the linear dielectric susceptibility which may cause furth
scattering of the electromagnetic wave field. For the pres
treatment to be valid, we require that the root mean squ
fluctuations of the random linear susceptibility caused
density fluctuations of the resonant atoms should be sm
compared to the dielectric variationDe of the periodic, non-
resonant PBG backbone. This places an upper limit on
allowed concentration of dopant atoms.

In general, the coupled Maxwell-Bloch equations~2.21!–
~2.24! have to be solved numerically. Before proceeding
derive soliton solutions it is instructive to consider two sp
cial cases of these equations. As a first special case we
w150. In this case, it is possible to obtain a set of coup
equations forE1 and E2 alone by eliminating the atomic
variables. We may seek a solution of the formE1,2(x,t)
5E1,2(z)e2 idt1 ikx and p1,2(x,t)5p1,2(z)e2 idt1 ikx, where
z5x2Vt. Then Eqs.~2.21!–~2.23! can be written as~setting
w150!

i ~12V!Ė11~d2k!E11bE2

1nL~ uE1u212uE2u2!E11hp150, ~2.27!

2 i ~11V!Ė21~d1k!1bE1

1nL~ uE2u212uE1u2!E21hp250, ~2.28!

FIG. 1. The dispersion relation of the linear periodic structu
Plotted is the relation betweenV andq for a uniform medium (b
50) ~dotted line! and for a periodic grating in which the latter ha
a frequency gap of size 2b.
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ṗ15 i
D

V
p12 i

m2

v\
E1w0 , ~2.29!

ṗ25 i
D

V
p22 i

m2

v\
E2w0 , ~2.30!

ẇ052
2i

\V
~E1p1* 1E2p2* 2E1* p12E2* p2!. ~2.31!

Here the dot represents the derivative with respect to
independent variablez, D5v2vba , andv511d. We as-
sume that the pulse durationtp is much shorter than the
atomic relaxation timesT1 and T2 , so that no relaxation
occurs for the duration of the pulse, in which case we
T1 ,T2→`. The validity of the slowly varying envelope
function approximation nevertheless requires us to cons
pulses for whichtp@v0

21. For v051015 s21, we require
pulse widths of ten femtoseconds or more. Usingp1 andp2
from Eqs.~2.27! and ~2.28!, the population inversionw0 in
Eq. ~2.31! becomes

ẇ05
2

\Vh

]

]z
@~12V!uE1u22~11V!uE2u2#. ~2.32!

This can be easily integrated to yield

w05211
2

\Vh
@~12V!uE1u22~11V!uE2u2#,

~2.33!

where we have assumed that@w0(2`)521# all atoms are
initially in their ground state. Having expressed the popu
tion inversion in terms of the electric field alone, we no
substitute Eqs.~2.27! and ~2.28! into Eqs.~2.29! and ~2.30!
and using Eq.~2.33! we obtain a set of coupled equations f
E1 andE2 alone:

i
]Ô1

]z
2

D

V
Ô12

m2h

V\
E1w050, ~2.34!

i
]Ô2

]z
2

D

V
Ô22

m2h

V\
E2w050. ~2.35!
s.
he
-

to
d

e

t

er

-

Here, the operatorsÔ1 andÔ2 are defined as

Ô15 i ~12V!Ė11~d2k!E11bE21nL~ uE1u212uE2u2!E1 ,
~2.36!

Ô252 i ~11V!Ė21~d1k!E21bE1

1nL~ uE2u212uE1u2!E2 . ~2.37!

The existence of an exact analytical solution to Eqs.~2.34!
and~2.35! is not trivial. In general the solution to Eqs.~2.34!
and ~2.35! requires numerical methods. However, it is po
sible to obtain a simple effective Maxwell-Bloch equation
considering the case of an external laser field freque
which is tuned close to the photonic band edge. In this c
we obtain analytical solutions describing some new types
solitary waves.

Steady-state solution to the Bloch equations

As a second special case of the general Maxwell-Blo
equations~2.21!–~2.24! we consider pulses that are long
than the relaxation timesT1 andT2 . In this case, the atomic
system reaches its steady-state response more quickly
the time scale over which the laser field changes and co
quently the Bloch equations can be adiabatically eliminat
We consider a steady laser field of the formE1,2,p1,2
;e2 idt, whered is the frequency detuning from the photon
midgap. The steady-state response follows from setting
time derivative equal to zero in the Bloch equations~2.17!–
~2.20!. The quasistatic atomic polarization satisfies the eq
tions

p15 i
m2

\a
~E1w01E2w1! ~2.38!

and

p25 i
m2

\a
~E2w01E1w1* !, ~2.39!

wherea5 iD21/T2 , andD511d2vba is the detuning of
the laser frequency from the atomic transition frequency.
serting Eqs.~2.38! and~2.39! into Eqs.~2.19! and~2.20! we
get two coupled equations forw0 andw1 :
w0F 1

T1
1

2m2g

\2 ~ uE1u21uE2u2!G5
weq

T1
2

2m2g

\2 @E1E2* w1* 1E1* E2w1#, ~2.40!

w152
2m2g

\2

E2* E1

@1/T11g~ uE1u21uE2u2!2 iDT2~ uE1u22uE2u2!#
w0 , ~2.41!
nd
-

es
whereg52T2 /(11D2T2
2). Equations~2.40! and ~2.41! can

be solved forw0 and w1 . Inserting these results into Eq
~2.38! and ~2.39! yields a cumbersome expression for t
nonlinear optical susceptibilityx, defined through the rela
tion P1,25xE1,2. In the absence of the Bragg scatteringw1

50, and we recover the textbook formula forx @19#.
When the field intensity is sufficiently small compared

the saturation intensity, the denominator can be expande
 in

powers ofuE1,2u2. In the case that all atoms are in the grou
state (weq521) andDT2@1 the expansion for the polariza
tion becomes

P152
Ndm2

\D F12
4m2T1

\2D2T2
~ uE1u212uE2u2!GE1 .

~2.42!

P2 is obtained from the above by interchanging the indic
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1,2. This static limit describes a simple Kerr nonlineari
However, this limit does not apply in the case of the hi
intensity, subpicosecond pulses which interact in a near r
nant manner with the impurity atoms.

In contrast to the standard steady-state nonlinear sus
tibility which we describe above, some entirely new effe
are possible if the impurity atom transition lies deep inside
a complete three-dimensional PBG. In this case, the spo
neous emission rate 1/T1 is completely suppressed and th
impurity atoms may exhibit coherent resonance dipo
dipole interaction~RDDI!. This leads to very low threshold
saturation of the individual atomic transition and a ‘‘gla
phase’’ of the atomic dipoles@20#. The resulting nonlinear
susceptibility differs dramatically from the above descr
tion. In particular, the imaginary part of the susceptibility c
be strongly suppressed whereas the real part remains
large. However, in this paper we consider only the case
low density of atoms tuned near the photonic band edge
which RDDI effects can be neglected.

III. APPROXIMATE SOLUTIONS TO THE
MAXWELL-BLOCH EQUATIONS

Since it is difficult to obtain exact analytical solutions
the full Maxwell-Bloch equations described earlier, we co
sider soliton solutions in two special frequency regimes.
the first case, the resonant laser frequency and the ato
transition are both chosen to be far outside the PBG. In
second case, both are chosen to lie very near one of
photonic band edges.

Introducing the Fourier transformations,

C~q,t !5
1

2p E dxe2 iqxC~x,t !, ~3.1!

p~q,t !5
1

2p E dxe2 iqxp~x,t !, ~3.2!

we may rewrite Eq.~2.21! in momentum space as

@ i ] t2qsz1bsx#C~q,t !1Fnl$C%1h^p~q,t !&50.
~3.3!

Here, the nonlinear functionalFnl$C% is given by

Fnl[
nL

2 E dq1E dq2$3C†~q1 ,t !C~q2 ,t !

2@C†~q1 ,t !szC~q2 ,t !#szC~q1q12q2!%.

~3.4!

The linear part of Eq.~3.3! can be diagonalized using th
q-dependent unitary operator

S5S sin~u/2! cos~u/2!

cos~u/2! 2sin~u/2!
D , ~3.5!

where tan(u)5b/q. Introducing the new spinor fieldC̃(q,t)
5S†(q)C(q,t), Eq. ~3.3! in the absence of nonlinear inte
action (nL50) becomes
.

o-

p-
s
f
ta-

-

-

ry
a

or

-
n
ic
e

he

i
]C̃

]t
5Aq21b2szC̃. ~3.6!

Near the photonic band edge (q50), S5(sx1sy)/& and

C̃5
1

&
S E11E2

E12E2
D ~3.7!

describing standing wave solutions. Far from Bragg re
nance (q→`), S5sx and

C̃5S E2

E1
D ~3.8!

describing plane waves propagating to the left or right. Th
are the two limits for which we derive approximate solutio
to the full nonlinear problem.

Frequency detuned far from Bragg resonance

When the laser frequency is detuned far from the Bra
resonance,q/b@1, thenAq21b2→q, and the electromag
netic field is not strongly affected by the periodic structu
Accordingly, the results derived below are also valid for
uniform medium exhibiting a nonresonant Kerr respon
doped with active atoms. Using the transformationS given
by Eq. ~3.8!, Eq. ~3.3! becomes

i
]C̃

]t
1qszC̃1Fnl$C̃%1h^ p̃&50. ~3.9!

Transforming back to coordinate space:

i
]C̃

]t
2 isz

]C̃

]x
1

nL

2
@3~C̃†C!

2~C̃†szC̃!sz] C̃1h^ p̃&50.
~3.10!

The corresponding Bloch equations are

] p̃

]t
5 iDv p̃2 i

m2

\
C̃w02 i

m2

2\
@~W̃†C̃!w12~W̃†szC̃!w2#,

~3.11!

]w0

]t
5

2i

\
~ p̃†C̃2C̃†p̃!, ~3.12!

and

]W̃

]t
5

i

\
$@~ p̃†sxC̃!2~C̃†sxp̃!#w1

2@~ p̃†isyC̃!2~C̃†isyp̃!#w2%. ~3.13!

Here, p̃5S†p and W̃5S†W. For illustrative purposes we
consider an optical pulse moving to the right~upper branch
of the dispersion!, C̃1

† 5(0,E1* ). In general, theW̃ terms
arise from Bragg scattering of the incident pulse. Far aw
from the band gap, the backscattered field is negligible
accordingly we seek a solution for whichW̃50. Introducing
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3882 PRE 58NEŞET AKÖZBEK AND SAJEEV JOHN
the notationw[w0 , p[p1 , andE[E1 , we obtain the one-
component Maxwell-Bloch equations:

i
]E

]t
1 i

]E

]x
1nLuEu2E1h^p&50, ~3.14!

]p

]t
5 iDvp2 i

m2

\
Ew, ~3.15!

]w

]t
5

2i

\
~p* E2E* p!. ~3.16!

When the nonlinear effect~Kerr response! of the host me-
dium is negligible (nL50), it is straightforward to recaptur
the usual McCall and Hahn~SIT! soliton. In the more gen-
eral case (nLÞ0) it is necessary to include phas
modulation f~z! and consider a trial solution of th
form E(x,t)5«(z)e2 idt1 ikx1 if(z) and p(x,t)5@u(z)
1 iv(z)#e2 idt1 ikx1 if(z), wherez5t2x/V, V is the velocity
of the solitary wave measured in units of the average sp

of light in the uniform mediumc/Aẽ, d is the detuning from
the midgap, andk is a yet to be determined wave vect
shift. Separating the real and imaginary components we
tain

2t«̇1h^v&50, ~3.17!

t«ḟ1~d2k!«1nL«31h^u&50, ~3.18!

u̇2ḟv52dav, ~3.19!

v̇1ḟu5dau2
m2

\
«w, ~3.20!

ẇ5
4

\
«v, ~3.21!

where t51/V21 and da5v2vba is the detuning of the
atomic transition frequencyvba from the field frequencyv
511d. The angular bracketŝ& denote an average over th
inhomogeneously broadened atomic spectrum as define
Eq. ~2.7!. In this paper we derive an analytic solution in th
sharp-line limit^u&5u and^v&5v. Soliton solutions in the
presence of inhomogeneous line broadening require num
cal methods. Usingv from Eq. ~3.17! in Eq. ~3.21!, the
population inversion can be expressed as

w5211
2t

\h
«2. ~3.22!

Using Eqs.~3.17! and ~3.18! we may express the atomi
polarization variables in terms of the field variables« andf.
In this case Eq.~3.19! becomes

t«̈1~da2ḟ !@tḟ«1~d2k!«1nL«3#1
hm2

\
«w50,

~3.23!

and Eq.~3.20! becomes

t«f̈12t«̇ḟ2 «̇~k2d1tda!13nL«2«̇50. ~3.24!
ed

b-

by

ri-

Multiplying Eq. ~3.24! by « and then integrating once yield

ḟ52
3nL

4t
«21

c1

t«2 1
1

2
~k2d1tda!, ~3.25!

where c1 is a constant of integration.]f/]t describes the
instantaneous frequency shift from the average frequen
This frequency shift~chirp! arises purely from the nonlinea
interactions. WhennL50 and c150 we require that this
phase modulation vanishes. This determines the wave ve
shift k5d2tda . In the case whennL50, the single-pulse
soliton discovered by McCall and Hahn follows immediate
from the above equations by settingc150. For c1Þ0, Eqs.
~3.25! and ~3.23! describe pulse train solutions@21–23#,
which have been observed experimentally@24#. To illustrate
the nature of these solutions we consider the on resona
caseda50 and neglect the host nonlinear Kerr coefficie
nL50. Inserting Eq.~3.25! into Eq. ~3.23! we obtain an
equation for« only,

«̈2g1«232g2«1g3«350, ~3.26!

whereg15c1
2/t2, g25hm2/\t, andg352m2/\2. Equation

~3.26! can be integrated once to yield

~ «̇ !21c21g1«222g2«21
g3

2
«450, ~3.27!

wherec2 is another constant of integration. DefiningS5«2

Eq. ~3.27! can be reexpressed as

~Ṡ!2

4
1g11c2S2g2S21

g3

2
S350. ~3.28!

Equation~3.28! is of the form (Ṡ)21U(S)50, and is ame-
nable to solution by means of a mechanical analogy. It
scribes the motion of a classical particle moving in a pot
tial U(S). Consider first the case when there is no chirpin
c15c250. In Fig. 2~a! we plot the potentialU(S). The ze-
ros of the potential can easily be found asS50 and S
52g2 /g3 . The soliton solution corresponds to the ca
when the particle is released atS52g2 /g3 and comes to res
at S50, resulting in a single-pulse solution. On the oth
hand, whenc1,2Þ0 we obtain a class of extended solution
determined by the zeros of the potential. One such solutio
depicted in Fig. 2~b! where the particle is released atS5S1
and oscillates betweenS1 andS2 . The negative root is elimi-
nated on physical grounds sinceS5«2.0. Equation~3.28!
can be further integrated to yield

E
S0

S dS

Ag2S22g3S3/222c2S2g1

5E
S0

S dS

AP3~S!
52z.

~3.29!

The integral of Eq.~3.29! can have a class of solution relate
to the elliptic functions, and the solution depends on
roots of P3(S) @25#. To obtain a physical solution we mus
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have at least two positive real rootsS1 andS2 . Similar so-
lutions can also be found in the case whennLÞ0 @17#.

We restrict our attention here to the nature of single-pu
solitons for whichc150. Using Eq.~3.25! in Eq. ~3.23! we
obtain

«̈5~a1«2a2«32a3«5!, ~3.30!

where a152da
21hm2/t, a25danL /t12m2/\2, and a3

53nL
2/16t2. Now Eq. ~3.30! can be rewritten in the form

«̈52
]U

]«
, ~3.31!

with U52a1«2/21a2«4/41a3«6/6. Equation ~3.31! de-
scribes a classical particle moving in a potentialU. In Fig. 3
we plot the potentialU(«). The solitary wave solution cor
responds to the particle starting at point«5«0 and stopping
at the hill where«50. Accordingly, the amplitude«0 corre-
sponds to the zeros ofU(«). The physically admissible so
lution is

«0
25

2a2/41A~a2/4!
21a1a3/3

a3/3
. ~3.32!

Equation ~3.30! is known as the nonlinear cubic-quint
Schrödinger equation and has an exact analytical solut
given by @26,27#

FIG. 2. Plotted is the potentialU(S) in which the classical par-
ticle moves fornL50. ~a! The potential in the case whenc1,250. In
this case the soliton solution corresponds to a particle being
leased fromS5S1 and coming to rest atS50 which results in
single-pulse hyperbolic secant solution.~b! The potential when
c1,2Þ0. Here the particle is released atS5S1 goes toS5S2 but
returns back toS1 . Consequently the particle oscillates betweenS1

andS2 resulting in a periodic pulse train.
e

n

«~z!5«0

sech~az!

A11b2tanh2~az!
. ~3.33!

The relation between the pulse width, velocity, and the d
sity remains the same as given in the McCall-Hahn soluti

t~a21da
2!5

hm2

\
. ~3.34!

On the other hand,

b5
nL«0

2

4ta
. ~3.35!

Finally, the phase anglef is obtained from Eq.~3.25!:

f~z!5f023 arctan@b tanh~az!#. ~3.36!

Before we discuss the case whennLÞ0 we briefly review
the McCall-Hahn solution. WhennL50 and c350, Eq.
~3.30! reduces to the nonlinear Schro¨dinger equation. This
has the well known hyperbolic-secant solution:

«~z!5
a\

m
sech~az!. ~3.37!

The relation between the pulse width and the velocity
given by Eq.~3.34!. The polarization componentsu and v
have the well known forms@28#

v52
a2m

~a21da
2!

sech~az!tanh~az! ~3.38!

and

u52
a2mda

~a21da
2!

sech~az!. ~3.39!

The atomic population inversion is given as

w5211
2a2

~a21da
2!

sech~az!. ~3.40!

The solution obtained for a homogeneously broadened
dium can easily be extended to an inhomogeneously bro
ened medium. This is obtained from the factorization ans
v(da ,z)5 f (da)v(0,z) which yields a self-consistent solu
tion of the Maxwell-Bloch equations. In this case, Eq.~3.34!
is replaced by

e-

FIG. 3. Shown is the potentialU(«) for the case whenc150
and nLÞ0. The soliton solution corresponds to the particle be
released from«5«0 and coming to rest at the hill where«50.
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a2t5E
2`

1`

ddag~da82da! f ~da!, ~3.41!

where f (da)5a2/(a21da
2) andg(da82da) is the inhomoge-

neous distribution function as defined previously.
In the absence of Kerr nonlinearity of the host mater

(nL50), the atomic Bloch equations can be written in
compact form by defining the Bloch vectorRW

5(2u/m,2v/m,w) andVW 5(2m«/\,0,da):

dRW

dt
5VW 3RW . ~3.42!

For instance, whenda50, thenu50 and the Bloch vector
lies in the (v,w) plane. As the optical pulse goes through t
medium the atoms are excited and then return to their gro
state. This corresponds to a 2p rotation of the Bloch vector
as well as a 2p pulse area. However, whennLÞ0, f enters
in the Bloch equations and Eq.~3.42! is replaced by

dRW

dt
5VW 3RW 1

df

dt
gRW , ~3.43!

where the 333 matrix g is given as

g5S 0 1 0

21 0 0

0 0 0
D . ~3.44!

The passage of the optical soliton pulse leads to polariza
componentsu andv of the form

v52
t«0a~11b2!

h

sech~az!tanh~az!

@11b2tanh2~az!#3/2, ~3.45!

u52
tda

h
«0

sech~az!

@11b2tanh2~az!#1/2

2
tba

h
«0

sech3~az!

@11b2tanh2~az!#3/2, ~3.46!

and the population inversion takes the form

w5211
2t«0

2

\h

sech~az!

11b2tanh2~az!
. ~3.47!

The generalization of the SIT-Kerr solution to include inh
mogeneous line broadening effects requires numerical m
ods since the factorization ansatz of McCall and Hahn is
longer applicable.

The inclusion of the nonresonant Kerr nonlinearity in
medium uniformly doped with two-level atoms has also be
considered by Matulic and Eberly@17#. They found an ap-
proximate result by treating the Kerr coefficient perturb
tively. Their result~valid whenb!1! can be recaptured b
setting the denominator term in Eqs.~3.33!, ~3.45!, and
~3.46! to unity. In this case, the phase modulation simp
becomesf;d tanh(az). Here, we obtain an exact analytic
solution valid for the entire range of parameter values. Fr
Eq. ~3.34! we can see that the relation between the pu
l

d

n

h-
o

n

-

e

width and velocity is not affected by the Kerr nonlineari
and is the same as in the case of the regular~SIT! solution.
However, as we can see from Eq.~3.32! the amplitude now
also depends on the Kerr coefficient, the atomic detuningda ,
and the dopant densityNd . This is very different than the
regular McCall and Hahn ~SIT! soliton where A2

5\2a2/m2. In the limit whennL→0, we recover the usua
SIT soliton solution. In general, the Kerr coefficient has
significant effect on the soliton solution. The envelope fun
tion is not a simple hyperbolic secant type of function a
the pulse width is not purely determined by the parametea
whenb becomes larger than unity.

We now consider a numerical example to explore the
rameter space of the analytical solution. We consider
parameters m510219 (esu), nL510210 (esu), and h
51018 cm23. We assume thata51023 ~which in our nota-
tion correspond to a pulse width of 1 ps!, and v0
.1015 s21 (l51.55mm). In Fig. 4 the peak pulse intensit

I 5cAẽuEu2/2p and the phase parameterb are plotted in
terms of the atomic detuning frequencyda5v2vba . As can
be seen, there is a significant difference when the field
quencyv is detuned above versus below the atomic tran
tion frequencyvba .

For the on resonance case (da50), the peak intensityI
50.4 GW/cm2 andb51.0. Whenda50.005 the peak inten-
sity becomes 1.7 MW/cm2 with b50.1, whereas whenda
520.005 we haveI 50.17 GW/cm2 andb510. The param-
eter b has an important effect on the overall pulse wid
When b!1, the soliton profile is given by a simple hype
bolic secant function with a pulse width of 1/a. On the other
hand, whenb@1 there are significant deviations from th
simple hyperbolic-secant function and the pulse width
comes narrower. This effect is shown in Fig. 5, where
pulse intensity on resonance~solid line! is contrasted with
that for da520.005. In the latter case, the pulse width na
rows significantly. If we neglect the Kerr nonlinearity, the
for the same parameters the peak intensity is abouI
5140 GW/cm2.

FIG. 4. Plotted is the peak intensity~solid line! and the phase
parameterb ~dotted line! of the soliton for a fixed valuea51023 as
a function of the detuning frequencyda5v2vba . The other ma-
terial parameters are chosen asm510219 (esu),nL510210 (esu),
andh51018 cm23.
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To further elucidate the nature of this solution, we plot
Fig. 6 the peak intensity as a function of the pulse wid
parametera for da50, with all the other parameters bein
fixed. In this case the amplitude takes the form

«0
25

8h2m6

nL
2\4a4 S 211A11

a6nL
2\6

4h2m8 D . ~3.48!

The intensity increases starting from long pulses down
about 5 ps but starts to decrease sharply as the pulse w
becomes shorter than 5 ps. In the McCall-Hahn~SIT! soliton,
the intensity continues to increase very rapidly as the pu
width becomes on the order of picoseconds. In order to
ate a soliton in the coherent interaction regime, one must
picosecond or subpicosecond pulses which in turn req
large powers. Using the combined effect of the nonlin
Kerr response and two-level atoms, solitons can be real
experimentally using lower intensity fields. The results p
sented above have assumed that the Kerr coefficient is p
tive. The solution for a negative Kerr coefficient can be si
ply obtained by mirror reflecting the plot in Fig. 4 wit
respect toda50.

We note finally that the solution described above is sim
lar to that obtained by Bowdenet al. @29#, including the ef-
fect of the near dipole-dipole~NDD! interaction between at
oms at high densities into the Bloch equations, but withnL
50. The resulting envelope function« satisfies a nonlinea
cubic-quintic Schro¨dinger equation given by Eq.~3.30! and
is accompanied by a similar phase modulation functionf.

IV. SELF-INDUCED TRANSPARENCY
NEAR A PHOTONIC BAND EDGE

As a second limiting case, we consider the resonant in
action of an optical pulse with two-level atoms when Bra
scattering of the electromagnetic wave is dominant. The p
tonic band edges occur atq50. Consequently the band-edg
behavior may be described by expanding the dispersion
lation V(q) for small q (q/b!1):

FIG. 5. Plotted is the intensity profile of the soliton solution f
da50 ~solid line! ~left scale! and for da520.005 ~dotted line!
~right scale!. The material parameters are chosen asm
510219 (esu),nL510210 (esu), andh51018 cm23.
o
th

e
e-
se
re
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ed
-
si-
-
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r-

o-

e-

V~q!5S V01
V9

2
q21¯ D , ~4.1!

where V05V(0)5b and V95(]2V/]q2)uq5051/b. In-
serting the expansion~4.1! into Eq. ~3.3! we obtain

i
]C̃

]t
1S V01

q2

2
V9DszC̃1

nL

2
$3~C̃†C̃!

2~C̃†sxC̃!sx%C̃1h^ p̃&50, ~4.2!

whereC̃(q,t)5S(0)C(q,t) and p̃5S(0)p. Within this ap-
proximation we replacedS(q) by S(0), whereS(0) is de-
fined in the preceding section. This approximation is va
provided that the soliton spectrum is centered sharply aro
q50. This means that in coordinate space the soliton en
lope function extends over many lattice constants. Tra
forming Eq. ~4.2! back to coordinate space we obtain t
following effective nonlinear wave equation:

i
]C̃

]t
2

V9

2
sz

]2C̃

]x2 1bszC̃1
nL

2
$3~C̃†C̃!

2~C̃†sxC̃!sx%C̃1h^ p̃&50. ~4.3!

Applying the same transformation to the atomic Bloch eq
tions yields

] p̃

]t
5 iDv p̃2 i

m2

\
C̃w02 i

m2

&\
@~W̃†C̃!f1

2~W̃†sxC̃!f2#, ~4.4!

]w0

]t
5

2i

\
~ p̃†C̃2C̃†p̃!, ~4.5!

FIG. 6. The peak intensity~solid line! and pulse velocity~dotted

line! ~measured in units of the average speed of lightc/Aẽ in the
medium! for da50 are plotted as a function ofa85103a, wherea
is the inverse pulse duration@see Eq.~3.33!# measured in units of
v0 . The other material parameters are chosen asm510219 (esu),
nL510210 (esu), andh51018 cm23.
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]W̃

]t
5

2i

&\
$@~ p̃†szC̃!2~C̃†szp̃!#f11@~ p̃†isyC̃!

2~C̃†isyp̃!#f2%. ~4.6!

Heref1
†5(1,0), f2

†5(0,1), andW̃5S(0)W.

We may consider two specific solutionsC̃†5(Ẽ1,0) and
C̃†5(0,Ẽ2) which correspond to the lower band edge a
upper band edge, respectively. Near the upper band edge
ansatzC̃†5(0,Ẽ2) and p̃†5(0,p̃2) reduces Eq.~4.3! to

i
]E

]t
1

V9

2

]2E

]x2 2bE1 iGE13nLuEu2E1h^p&50.

~4.7!

Here, Ẽ25(E12E2)/&5&E1 , p̃25&p1 , and we have
renamedE15E, p15p. Also W̃†5(&w1,0). In order to
make our model more realistic, we have also added lin
losses (G.0) or gain (G,0). In order to extract analytica
results we neglect the effects of inhomogeneous line bro
ening in what follows and set^p&5p. Later we will discuss
a special case for which inhomogeneous broadening ca
treated analytically. Inserting the same ansatz into the Bl
equations~4.4!–~4.6! yields

]p

]t
5S iDv2

1

T2
D p2 i

m2

\
E~w02w1!, ~4.8!

]w0

]t
5

4i

\
~p* E2pE* !, ~4.9!

]w1

]t
5

2i

\
~pE* 2p* E!. ~4.10!

Here we have included the effects of the dipole-dephas
time T2 , which may arise from atom-atom collisions or th
interaction of atoms with lattice vibrations of the host ma
rial. The time scale forT2 in rare-earth doped glass fibers
in the range of nanoseconds to femtoseconds. Howeve
most cases cooling down the solid increasesT2 . The upper
level lifetime T1 is neglected, since for atoms doped in
solid, T1 is on the order of ms toms. For instance, for an
erbium doped glass the lifetime of the transition4I 13/2
→4I 15/2 corresponding to 1.5mm is about 10 ms and th
dipole-dephasing time is on the order of one picosec
@30,31#. Since we are dealing with nanosecond to subpi
second pulses we may safely take the limitT1→`. We will
show in what follows that under certain conditions dipo
dephasing and linear gain may offset each other, leading
soliton solution. As expected, near the band edge we ha
contribution from theW term, since both the forward an
backward fields contribute almost equally to the effect
field. Equations~4.8!–~4.10! can be reduced to the standa
form of the Maxwell-Bloch equations by definingw̄5w0
2w1 :

]p

]t
5S iDv2

1

T2
D p2 i

m2

\
Ew̄, ~4.11!
the

ar

d-

be
h

g

-
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d
-

a
a

]w̄

]t
5

6i

\
~p* E2pE* !. ~4.12!

As before, we seek a general solution of the fo
E(x,t)5«(z)e2 i (b2d)t1 ikx1 if(z) and p(x,t)5(u
1 iv)e2 i (b2d)t1 ikx1 if(z) wherez5t2x/V and V is the ve-
locity of the solitary wave. Inserting this ansatz into th
Maxwell-Bloch equations yields

t«ḟ1
V9

2V2 «̈2
V9

2V2 «ḟ22a«13nL«31hu50,

~4.13!

2t«̇1
V9

V2 «̇ḟ1
V9

2V2 «f̈1G«1hv50, ~4.14!

u̇2ḟv52dav2
u

T2
, ~4.15!

v̇1ḟu5dau2
m2

\
«w̄2

v
T2

, ~4.16!

ẇ̄5
12

\
«v. ~4.17!

Here, t5V9k/V21, a5(d1k2V9/2), andd is defined as
the detuning from the upper band edge. Since our formu
tion is restricted to near band-edge behavior it is assum
that udu!1 (d.0 inside the gap,d,0 outside the gap!. The
total field frequency is given asv511b2d and da5v
2vba is the detuning of the average laser frequency from
atomic transition frequency.

First we consider the case of no losses,G50, T2→`, in
the sharp-line limit. Usingv from Eq. ~4.14! the population
inversion can be integrated once to give

w̄5211
6«2

\h S t2
V9

V2 ḟ D , ~4.18!

where we have chosenw(2`)521. That is to say, all at-
oms are initially in their ground state. Our band-edge a
proximation entails the assumptions that the envelope fu
tion is extended over many lattice constants (a!1), and that
the soliton velocityV!1. Furthermore, we make the a
sumption that the phasef!1. In the spirit of the SVEA, we
neglect the (ḟ)2 term in Eq.~4.13! and likewise the higher
derivative terms in Eq.~4.14!. We then insert the trial solu
tion for the envelope function«5A sech(az) and the phase
f5d tanh(az) into Eqs. ~4.13! and ~4.14! and solve foru
andv. This yields

v52
tAa

h
sech~az!tanh~az!, ~4.19!

u52
A

h S V9a2

2V2 2a D sech~az!

2
A

h S 3nLA21tda2
V9a2

V2 D sech3~az!. ~4.20!
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Using these expressions in Eqs.~4.15! and ~4.16! and keep-
ing only terms up toa2 and ad, we obtain the following
relations:

V9a2

2V2 5a1tda , ~4.21!

nLA25
V9a2

3V2 2
4

9
tda, ~4.22!

t~a21da
2!5

m2h

\
, ~4.23!

3m2

\2 A25a21
2

3
dada. ~4.24!

In what follows we consider two separate physical situatio
In the first case the Kerr effect is significant (nLÞ0) and in
the second casenL50.

A. Solitary waves in a nonlinear Bragg grating
doped with resonance two-level atoms

The relative importance of the nonresonant Kerr effec
determined by the magnitude of the Kerr constant and
incident light intensity. Here, we consider the case wh
both the Kerr effect and the GVD are significant. Requiri
that Eqs.~4.22! and ~4.24! are consistent with each othe
determines the phase parameterd:

d5
3a

2 S m2V9

\2V2nL
21D Y S 2tm2

nL\2 1daD . ~4.25!

Similarly, in order for Eqs.~4.21! and~4.23! to be consistent
with each other the wave vector shiftk must obey the equa
tion

j31j2S 2d̃a

V
2VD 1jF2d̃24d̃a1S d̃a

V
D 2G22Vd̃12Vd̃a

2
d̃a

2

V
2

hm2

V\b2 50, ~4.26!

wherej5k/b, d̃5d/b, andd̃a5da /b. Equation~4.26! de-
termines the wave vector shiftk for a given detuningd and
velocity V. The soliton velocity and detuning are free para
eters with the restriction that they are small compared
unity in the near band-edge approximation. We make
observation from Eq.~4.26! that whenV→2V, j→2j.
Sincet5V9k/V21.0, k andV must have the same sign
Equation~4.26! always has one real root and in certain ca
three real roots. Our numerical study reveals that when th
are three real roots only one of them leads to a physic
admissible soliton solution.

The solution described here is quite different from t
fiber SIT-NLS solution obtained for pulse propagation in
doped optical fiber@14#. In fibers, GVD arises from the ma
terial dispersion, whereas in the Bragg grating a much lar
GVD arises from the variation in the linear dielectric co
s.

s
e
n

-
o
e

s
re
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er

stant. A more important difference is that in fibers, in t
absence of phase modulation, the existence of the SIT-N
solution requires that the material constants satisfy the r
tion V95nL\2/m2 @14#. In the SIT-gap solution this highly
restrictive condition on the material parameters is not
quired. In this sense, our SIT-gap soliton is much more
bust than previously studied@14# SIT fiber solitons.

In the case of erbium doped fibers, the typical value
nL\2/m2 turns out to be many orders higher than the value
V9 in the fibers. This makes the realization of such a soli
in erbium doped fibers very difficult. Our studies suggest t
a fiber engineered with a periodic grating would greatly
cilitate the observation of a SIT-NLS soliton soliton wit
erbium atoms.

Before discussing the SIT-gap soliton solution in mo
detail we briefly review the important properties of the g
solitary wave when there are no dopant atoms in the m
dium. When the dopant density parameterh50, the soliton
inverse size parameter is given by

a25
2V2

V9
a5

2V2

V9
~d1k2V9/2! ~4.27!

and the soliton amplitude becomes

A25
a2V9

3nLV2 . ~4.28!

Here,t5(V9k/V21)50. This determines the wave vecto
shift for a given soliton velocityV. The gap solitary wave is
described by two free parameters, the soliton velocityV and
the detuningd. From Eq.~4.27! it can be seen thata van-
ishes asd→2k2V9/2. In other words, the soliton size d
verges and the amplitude vanishes just outside the P
When V50, the soliton is stationary and the soliton amp
tude vanishes precisely when the detuningd approaches the
upper band edge. The near band-edge solution agrees
the more general time-dependent solution obtained
Aceves and Wabnitz@6# for an undoped material, in the limi
whenV,d!1.

In order to illustrate the SIT-gap solution further, we co
sider the following material parameters:m510219 (esu),b
[De/4ẽ50.1, andnL56px (3)/ ẽ51029 (esu). A particu-
larly simple solution is obtained when the pulse velocity
chosen to satisfy the relationV5mA(V9/nL)/\. For this ve-
locity it is readily seen from Eq.~4.25! that the phase modu
lation f50. Below we will describe in detail this particula
case (V50.0079) and then make some generalizations tof
Þ0. Consider first the case in which the atomic transiti
frequency is at the upper band edgevba511b and a dopant
densityh51016 cm23. In this case, the atomic detuning sim
ply becomesd̃a5V9da52 d̃. The soliton disappears jus
outside the PBG atd̃.20.000 129 withk̃.0.011 65. How-
ever, the soliton solution exists further outside the band
region than the pure undoped gap soliton, with the sa
velocity. Whend̃.20.000 129, there are three real rootsk̃
given by 0.0038,20.014, and 0.0187. The first two mak
a2,0, so that only the third is physically admissible. Ford̃
50, there is only one real root 0.0134 makinga2.0. In Fig.
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FIG. 7. Shown is the peak intensity~solid line! and pulse width
~dotted line! as a function of the detuning from the upper band ed
for ~a! h51016 cm23, ~b! h5531016 cm23, and ~c! h
51018 cm23. The detuning parameterd/b.0 corresponds to a de
tuning inside the band gap whereasd/b,0 corresponds to a detun
ing outside the photonic band gap. Here the atomic transition
quencyvba511b is assumed to be at the upper band edge and

other material parameters are chosen asb50.1, ẽ53, m
510219 (esu),V50.0079, andnL51029 (esu).
7~a! the peak intensity and width of the SIT-gap soliton s
lution is plotted as a function of the detuningd̃. As can be
seen the peak intensity increases and the width beco
shorter as the soliton frequency is detuned into the band
region just below the upper band edge (d̃.0). Qualitatively
similar results hold when the atomic transition frequency
placed just below the upper band edge (vba5110.999b)
with the same density of atoms. Here the soliton vanishe
around d̃.23.031025 with k̃.0.007 965, similar to the
pure gap soliton case. The results are depicted in Fig. 8~a!.

Dramatic changes are observed in the solution when
atomic transition frequency is placed slightly above the u
per band edge (vba5111.0001b). In this case, the soliton
vanishes atd̃.20.000 194 withk̃.0.014 89. As shown in
Fig. 9~a! the soliton width first narrows, then widens, an
finally continues to narrow again. This behavior has no a
log in the pure gap soliton solution. As the atomic transiti
frequency is tuned further above the upper band edge (vba
5111.1b), the minimum point in the intensity of Fig. 9~a!
eventually goes to zero, splitting the solution into two fr
quency bands,20.100 012, d̃,20.099 988 1 and20.311
31024, d̃. In other words, the parameter space in which
soliton solution exists is divided into two regions. This fact
easily seen by settinga equal to zero in Eqs.~4.21! and
~4.23!. From Eq.~4.21! we find that

d̃52
d̃d~ k̃/V21!1 k̃2/2

~22 k̃/V!
. ~4.29!

Here, we have assumed that the transition frequency isvba

511b2dd . Insertingd̃ into Eq.~4.23! leads to the follow-
ing nonlinear equation fork̃:

~ k̃/V21!~ d̃d1 k̃2/2!22
hm2

\b2 ~22 k̃/V!250. ~4.30!

Depending on the choice of material parameters and sol
velocity, Eq.~4.30! may have one or more real roots, leadin
to a region where a soliton solution exists. Clearly, wh
there are no dopant atoms (h50), then the only possible
root is k̃5V.

Next we consider how changes in the density of the d
ant atoms lead to changes in the soliton structure. We be
with the case when the atomic transition frequency is p
cisely at the band edge. As the dopant density is increase
h5531016 cm23 the small flat region in the peak intensit
in Fig. 7~a! of the solution becomes more pronounced a
evolves into the dip seen in Fig. 7~b!. As the dopant density
is further increased the peak intensity vanishes over a s
frequency range, causing the solution to split. We show
effect in Fig. 7~c! for a dopant densityh51018 cm23. As can
be seen, there is a soliton solution between 0.000 334, d̃
,0.000 817, and the solution vanishes at either end poin
this frequency interval. In addition the soliton disappears
d̃<20.000 946 3. For the case when the atomic transit
frequency is placed just below the upper band edge, foh
51016 cm23 we see from Fig. 8~a! there are no dips in the
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PRE 58 3889SELF-INDUCED TRANSPARENCY SOLITARY WAVES IN . . .
solution. However, when the density is increased toh
51018 cm23, there is a significant change in the solutio
@see Fig. 8~b!#. Similar effects occur when the transition fre
quency is slightly outside the band gap@see Fig. 9~b!#.
Clearly the atomic transition frequency as well as the dop
density together have a significant effect on the nature of
SIT-gap solution. For the pure gap soliton there are only t
free parameters (V,d) describing the solution. For the SIT
gap solution the atomic detuning frequency and dopant d
sity are degrees of freedom leading to a much richer fam
of soliton solutions.

So far we have fixed the atomic transition frequency, a
then varied the soliton average frequency by changing
laser frequency. Another situation with interesting practi
applications arises when the average soliton frequenc
fixed and the atomic detuning frequencyda is varied. This
can be accomplished by applying a static electric field acr
the medium and Stark shifting the atomic transition f
quency. Consider first the case whend̃50 and h

FIG. 8. Plotted is the peak intensity~solid line! and pulse width
~dotted line! as a function of the detuningd/b from the upper band
edge, when the atomic transition frequency is chosen to be slig
below the upper band edge and inside the gapvba5110.999b. ~a!
For a densityh51016 cm23 and ~b! for h51018 cm23. All other
parameters are the same as in Fig. 7.
nt
e
o

n-
ly

d
e
l
is

ss
-

51016 cm23. Here we define the atomic transition frequen
asvba511b2d1D, whered is fixed at some value andD
represents the atomic detuning (D.0 shifts the frequency
outside the band gap region andD,0, inside the band gap!.
The peak intensity and pulse width as a function of the
tuningD are shown in Fig. 10~a!. Clearly, the soliton param
eters change very dramatically aroundD.0 for a small shift
in D. This suggests that the soliton characteristics can
controlled externally by an applied static electric field. So
ton gating and control in this manner may be very usefu
optical telecommunications and optical computing. In F
11~a! the results are shown when the average soliton
quency is placed inside the band gap (d̃50.001). The varia-
tion in soliton peak intensity and pulse width requires
larger change inD values and the variation is weaker com
pared with the band-edge case (d̃50). In addition the
change in the solution now appears more on the nega
side of D. As before, the atomic density has an importa
effect on the results.

When d̃50, as the dopant density is increased, the m

ly

FIG. 9. Plotted is the peak intensity~solid line! and pulse width
~dotted line! of soliton solution when the atomic transition fre
quency is slightly outside the band gapvba5111.0001b. ~a! For a
densityh51016 cm23 and ~b! for h51017 cm23. All other param-
eters are the same as in Fig. 7.
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mum point in the intensity approaches the axis and at so
density crosses it. In Fig. 10~c! we show the results forh
51017 cm23. There is no soliton solution in the rang
0.000 127 7, d̃,0.002 461, at velocityV50.0079. On the

FIG. 10. Plotted is the peak intensity~solid line! and pulse width
~dotted line! as a function of the atomic detuningD/b from the on
resonance case. Here the detuningd/b50. ~a! for h51015 cm23,
~b! for h51016 cm23, ~c! h51017 cm23. All other parameters are
the same as in Fig. 7.
e

other hand, soliton solutions with phase modulation and
ferent velocity do exist in this quasi-stop-band for the sa
atomic density. This fixed velocity stop-band effect disa
pears when the dopant density is lowered toh51015 cm23

@Fig. 10~a!#. When d̃50.001 andh59.031017 cm23 we
show in Fig. 11~b! that the increase of the dopant density h
a stronger effect on the soliton parameters than in Fig. 11~a!.
In particular, the minimum point of the intensity is closer
zero. Further increase of the dopant density eventually sp
the solution into two regions as shown in Fig. 10~c!. In all
cases the choice of dopant density and the value of the
erage soliton frequency have a significant effect on the s
ton parameters, as the atomic transition frequency is var
These results underscore the high degree of tunability of s
ton properties, in the doped PBG, by means of an exte
electric field.

In the illustrations given above, it was assumed that
velocity is chosen such that the phase modulationf50. This
assumption facilitated a simple analytical treatment of s
ton properties. As phase modulation is introduced the sol
velocity deviates from the special value ofV

FIG. 11. Plotted is the peak intensity~solid line! and pulse width
~dotted line! as a function of D/b for d/b50.001. ~a! h
51016 cm23 and ~b! h59.031017 cm23. All other parameters are
the same as in Fig. 7.
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5mAV9/\AnL and a new family of soliton solution
emerges for each choice ofV. We may considerf50 as a
special case from which more general solutions are obta
perturbatively with small]f/]t and small deviations in ve
locity. This special case facilitates the analytical treatmen
inhomogeneous line broadening and the pulse area theo
as we discuss below. The description of more general s
tons exhibiting phase modulation, however, requires the
of numerical methods.

The population inversionw and the induced polarizatio
componentsu andv for the f50 case are

w̄5211
2

11~da /a!2 sech2~az!, ~4.31!

v52
1

)

m

11~da /a!2 sech~az!tanh~az!, ~4.32!

u52
1

)

mda /a

11~da /a!2 sech~az!. ~4.33!

Sincev can be written asv(z,da)5 f (da)v(z,0) we may use
the factorization method to obtain the solution when inhom
geneous line broadening is taken into consideration. In p
ticular,

f ~da!5
1

11~da /a!2 . ~4.34!

We define

I 15E
2`

`

g~da82da! f ~da!d~da! ~4.35!

and

I 25E
2`

`

dag~da82da! f ~da!d~da!, ~4.36!

whereg(da82da) is the probability distribution of the inho
mogeneously broadened energy levels. Then Eq.~4.21! must
be replaced by

a2V9

2V2 5a1
I 2

I 1
t ~4.37!

and Eq.~4.23! replaced by

a2t5
hm2

\
I 1 . ~4.38!

Here,t5V9k/V21. In the sharp-line limit@wheng5d(da8
2da) is a delta function# we recover the previous solution

SIT solitons in ordinary vacuum satisfy the well know
McCall-Hahn pulse area theorem@9#. A similar area theorem
holds for the doped Bragg grating. This can be seen by c
sidering the on resonance case. Thenu50 and the Bloch
ed

f
em
li-
se

-
r-

n-

equations take the form v̇52(m2/\)«w̄ and ẇ̄
5(12/\)«v.

These equations can be mapped onto the standard typ
Bloch equations by defining R52)m«/\ and v̄

52)v/m, then we havev̇̄52Rw̄ and ẇ̄5Rv̄.
The Bloch vector tipping angle is defined asQ(x,t)

5*2`
t dt8R(x,t8)5(2)m/\)*2`

t dt8«(x,t8)[(pulse area).

Then we have the solutionv̄52sin(Q) andw̄52cos(Q). In
the (ū,w̄) plane the atoms are initially in their ground sta
w̄(2`)521 and are subsequently excited as the pu
propagates through the medium. Finally they return back
their ground state. The Bloch vector tipping angle rota
through 2p, so that the area of these pulses is 2p as well.

The McCall-Hahn pulse area theorem describes how
arbitrary optical pulse evolves into a pulse area given by
integer multiple of 2p. Introducing the rescalingx/V9k→x
in Eq. ~4.7! we obtain

]«~x,t !

]t
1

]«~x,t !

]x
1h^v~x,t,da!&50, ~4.39!

where the^ & bracket in Eq.~4.39! represents the spectra
averaging over the inhomogeneously broadened atomic
The Bloch equations can be expressed as

]u

]t
52dav, ~4.40!

]v
]t

5dau2
m2

\
«w̄. ~4.41!

Integrating Eq.~4.39! over the the time of the pulse an
multiplying by 2)m/\, we obtain

]A~x!

]x
52

2)mh

\ E
2`

T

^v~x,t,da!&dt, ~4.42!

where the pulse area is defined asA(x)5Q(x,T). The upper
limit T is large enough for the envelope«(x,t) to be effec-
tively zero. For a time intervalT.t.T0 the second term in
Eq. ~4.41! is negligible, whereT0 marks the end of the pulse
Then we obtain a solutionu(T0 ,x,da)52v sin(dat). Also
from Eq. ~4.40! v52(1/da)(]u/]t). Using these solutions
in Eq. ~4.42! we obtain

]A~x!

]x
5

2)mh

\ E
2`

`

g~da!v~x,t,da!
sin~dat !

da
d~da!.

~4.43!

Since the incoherent relaxation times are assumed to be
finite in this model we can take the limit thatT→`. Then
sin(dat)/da acts as a delta function and the area theorem
comes

]A~x!

]x
5

2)mhp

\
g~0!v~0,x,T0!52

mhp

\
g~0!sin A~x!.

~4.44!

The general solution is given by
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A~x!52 arctanF tan@A~0!/2#expS 2
mhp

2\
xD G . ~4.45!

As in the case of ordinary vacuum, this area theorem sh
that optical pulses with arbitrary pulse areas will evolve in
pulses with areas that are multiples of 2p for which
]A(x)/]x50.

B. Solitary waves in a linear Bragg grating
doped with resonance two-level atoms

In some cases, it is possible that the doped PBG mate
exhibits negligible nonresonant Kerr response. For exam
in semiconductor materials such as AlGaAs, the Kerr co
ficient changes sign between 0.8 and 1.6mm. By operating
close to the zero value, Kerr interaction may then be
glected. WhennL50 Eqs.~4.21!–~4.24! take the form

a25
2V2

V9
~a1tda!, ~4.46!

d5
3V9a

4V2t
, ~4.47!

t~a21da
2!5

hm2

\
, ~4.48!

A25
\2

3m2 S a21
2

3
dadaD . ~4.49!

Here, the phase parameterd is directly determined by Eq
~4.47! and is nonzero for any velocity and detuning. Fro
Eqs. ~4.46! and ~4.48! we obtain the same cubic equatio
~4.26! as in the SIT-gap solution for a given soliton veloci
V. The above solution is valid when the phase parameterd is
much less than unity. This is achieved when the freque
detuningd is close to the critical detuning where the soluti
vanishes.

We illustrate the solution using the following material p
rameters:m510219 (esu),h51016 cm23, andb50.1. Con-
sider a soliton velocity ofV50.02. In this case the solito
vanishes aroundd̃520.000 273 44 fork̃50.0221.

The atomic Bloch vector componentsw̄, v, and u are
given by

w̄5211
6tA2

\h
sech2~az!, ~4.50!

v52
tAa

h
tanh~az!sech~az!, ~4.51!

u52
atda

h
A sech~az!2

A

h S tad2
V9a2

V2 D sech3~az!.

~4.52!

Clearly the atomic Bloch vector has a structure similar
that of SIT in a uniform Kerr medium. Inu, the contribution
proportional to sech3 is entirely due to the GVD effect. In
this sense the role of the Kerr effect is replaced here by
GVD.
s

ial
e,
f-

-

y

e

C. Solitary wave solution in the presence of damping
and linear loss/gain

In obtaining a solitary wave solution in the preceding se
tion, it was assumed that the pulse durationt!T1 ,T2 , so
that no damping occurs for the duration of the pulse. In t
case we setT1,2→`. As discussed before, for atoms dop
in a solid material the lifetime of the upper state is on t
order of ms toms. For pulses with nanosecond to picoseco
durations, we may neglect 1/T1 . On the other hand, the
dipole-dephasing timeT2 can be on the order of nanosecon
to picoseconds. One possible way to prolongT2 is to cool the
material to liquid He4 temperatures. If the pulse duration
comparable to the dephasing timeT2 , the Bloch equation
does not allow a shape preserving pulse. Some other me
nism is needed to compensate this decoherence. In this
tion we demonstrate the existence of solitary wave solutio
in the presence of linear loss/gain of the host medium
incoherent pumping of the medium. We consider a mo
with nonresonant Kerr nonlinearity in which the field
tuned close to the band edge. For illustration, we cons
the on resonance case (da50) and f50. Thenu50 and
setting the phasef50, in Eqs.~4.13!–~4.17! we obtain

V9

2V2 «̈2a«13nL«350, ~4.53!

2t«̇1G«1hv50, ~4.54!

v̇52
m2

\
«w̄2

v
T2

, ~4.55!

ẇ̄5
12

\
«v. ~4.56!

Equation ~4.53! is just the nonlinear Schro¨dinger equation
which has the solution«5A sech(az) with pulse width

a5A2a

V9
V ~4.57!

and amplitude

A5AV9

3nL

a

V
. ~4.58!

Insertingv from Eq. ~4.54! in Eq. ~4.56! we obtain

E
2`

z

ẇ̄~z8!dz85E
2`

z 12

\h
~t««̇2G«2!dz8. ~4.59!

The left hand side can easily be integrated using the in
conditionw(2`)5win and the right hand side can be int
grated using the envelope function« found above:

w̄~z!5win2
12GA2

h\a
1

6tA2

h\
sech2~az!2

12GA2

h\a
tanh~az!.

~4.60!

Equation~4.54! yields the atomic polarization
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v52
taA

h
sech~az!tanh~az!2GA sech~az!. ~4.61!

Inserting Eqs.~4.60! and ~4.61! into Eq. ~4.55! and then
equating terms proportional to sech, sech tanh and sech3, we
obtain the following set of conditions:

ta2

h
52

m2win

\
1

m212GA2

h\2a
1

G

T2h
, ~4.62!

ta25
3m2tA2

\2 , ~4.63!

Ga5
12Gm2A2

\2a
1

ta

T2
. ~4.64!

Combining Eqs.~4.63! and ~4.64! we obtain the relation

tS 3G1
t

T2
D50. ~4.65!

From Eq.~4.65! there are two possible solutions,t50 and
t523GT2 . These two values fort yield two distinct soli-
tary wave solutions.

Whent50, Eq. ~4.64! yields the amplitude

A5
a\

2)m
~4.66!

and Eq.~4.62! yields the inverse pulse width

a5
hm2win

\G
2

1

T2
. ~4.67!

We can see from Eq.~4.66! that the pulse area i
(2)m/\)*«(z)dz5p. The amplitudes obtained from Eq
~4.58! and Eq.~4.66! are consistent provided that the velo
ity

V5
2m

\
AV9

nL
. ~4.68!

Sincet5(V9k/V21)50, it follows thatk5V/V9. UsingV
from Eq. ~4.68! we obtain

k5
V

V9
5

2m

\
A 1

V9nL
. ~4.69!

Equation ~4.57! gives the pulse width which can be e
pressed, using Eqs.~4.68! and ~4.69!, as

a5
4m2

\2nL
. ~4.70!

Sincea was already determined from Eq.~4.67! consistency
requires that the initial inversion is given by

win5
4G

h\nL
1

\G

hm2T2
. ~4.71!
In other words, the incoherent pumping has to be chose
satisfy the condition~4.71!. Let us consider a numerical ex
ample.G is related to the linear absorption coefficient by t
relation G5e i /4ẽ, wheree i is the imaginary part of the di-
electric constant andẽ is the real part of the dielectric
constant. In the literature the linear absorption is defin
through the linear absorption coefficienta5(v/c)Im x

in units of cm21. With this definitionG51025a/4ẽ, where
we assumed thatv51015 s21. Consider an erbium dope
fiber grating. The material parameters are approxima
given as m510221 (esu), nL510214 (esu), T250.1 ps,
h51018 cm23, and a51026 cm21. Then we require that
win50.01.

In the limit when T2→` in a medium with linear loss
(G.0), the condition~4.71! reduces to

win5
4G

h\nL
. ~4.72!

Such an initial population can be prepared by incoher
pumping of the atoms provided that the material parame
satisfy the inequalityG,\hnL/4. In this case, the popula
tion inversion can be written as

w̄~z!52wintanh~az!. ~4.73!

An alternative solution is possible whent523GT2 . In
this case,k5(V/V9)(123GT2). From Eq.~4.63! the ampli-
tude is given by

A25
\2a2

3m2 . ~4.74!

For this solution, the pulse area is equal to 2p rather thanp.
Demanding the consistency of Eqs.~4.74! and~4.58! yields a
velocity

V5
m

\
AV9

nL
, ~4.75!

which is precisely one-half of the velocity of thet50 soli-
ton. The soliton wave vector is given by

k5A m2

V9\2nL
~123GT2! ~4.76!

and the inverse pulse width follows from Eq.~4.57!:

a5
2m2

\2nL
S m2

2\2nL
~123GT2!2D . ~4.77!

On the other hand, Eq.~4.62! yields

a52
2

3T2
1AS 2

3T2
D 2

1
1

3T2
S hm2win

G
2

1

T2
D .

~4.78!

In this case, the consistency of Eqs.~4.77! and~4.78! leads to
a more complicated relation between the material parame
and the incoherent pumping:
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3894 PRE 58NEŞET AKÖZBEK AND SAJEEV JOHN
win5
3T2G

hm2 F 2m2

\2nL
S m2

2\2nL
~123GT2!21

2

3T2
D 2

2S 2

3T2
D 2

1
1

3T2
2G . ~4.79!

V. DISCUSSION AND CONCLUSIONS

We have shown the existence of self-induced transp
ency solitary waves in a one-dimensional PBG doped w
resonant two-level atoms. A rich variety of soliton solutio
are possible depending where the incident light frequenc
tuned relative to the photonic band edges and the nonlin
response of the host medium. Specifically we demonstra
that near the band edge, there exist a family of solutions
is simultaneously a gap soliton as well as a self-indu
transparency soliton. These solutions depend strongly on
atomic transition frequency as well as the dopant concen
tion. Analytical solutions are possible for a particular solit
velocity for which self-phase modulation effects vanish.
general, it is necessary to use numerical methods to ob
solutions valid for general velocities and general ph
modulation effects. The near band-edge approximation p
vides a valuable starting point for the description of solito
deeper inside the photonic band gaps.

We have restricted our attention to a number of spe
and illustrative cases where simple analytical solutions
possible. We believe that these illustrations provide an in
duction to the rich variety of soliton solutions which arise
a doped photonic band gap material. The most striking f
ture of the near band-edge solitons is their very high deg
of tunability through small changes in the atomic transiti
frequencies and atomic densities. In providing these illus
tions, we have made a number of idealizations in our mo
which we discuss below.

A more realistic model of SIT-gap solitons must inclu
s.
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the effects of inhomogeneous line broadening of the dop
atoms. For dopant atoms embedded in the solid fraction
the material, random Stark shifts of the excited energy lev
will arise from the local electric fields of the crystal. For re
impurity atoms such as erbium, there are many atomic tr
sitions close to each other in frequency. It is important
generalize our two-level model to dopant atoms with seve
closely spaced excited levels for comparison with expe
ments. Another useful generalization is to the case of e
tronic excitations in a semiconductor host material. In se
conductors, the bound excitations can be modeled as t
level systems which move with the optical pulse.

In this paper we have considered only a one-dimensio
periodic structure. In a real three-dimensional PBG mater
transverse propagation effects must be included to desc
finite energy soliton pulses of finite extent in all spatial d
mensions. From an experimental point of view it is importa
to understand the stability of SIT-gap solitons with respec
small perturbations. It is also useful to study pulse propa
tion in a finite resonant medium, how to excite these solito
in a finite medium, and whether an arbitrary pulse evolv
into a stable SIT-gap soliton.

It is our hope that our simple model calculations will m
tivate more detailed numerical studies of this nature wh
explore the full parameter space of soliton solutions in
PBG. This may in turn lead to the application of doped PB
materials for all-optical switching devices and fiber interco
nectors for pulse reshaping and amplification in all-opti
communication systems.
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